首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1722篇
  免费   311篇
  国内免费   546篇
测绘学   46篇
大气科学   7篇
地球物理   835篇
地质学   1213篇
海洋学   120篇
天文学   7篇
综合类   282篇
自然地理   69篇
  2024年   3篇
  2023年   17篇
  2022年   41篇
  2021年   43篇
  2020年   81篇
  2019年   83篇
  2018年   94篇
  2017年   64篇
  2016年   105篇
  2015年   105篇
  2014年   114篇
  2013年   142篇
  2012年   122篇
  2011年   121篇
  2010年   122篇
  2009年   124篇
  2008年   115篇
  2007年   119篇
  2006年   116篇
  2005年   128篇
  2004年   90篇
  2003年   82篇
  2002年   74篇
  2001年   64篇
  2000年   72篇
  1999年   38篇
  1998年   38篇
  1997年   42篇
  1996年   37篇
  1995年   35篇
  1994年   24篇
  1993年   28篇
  1992年   27篇
  1991年   24篇
  1990年   12篇
  1989年   5篇
  1988年   8篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1979年   4篇
  1978年   1篇
  1977年   3篇
  1954年   2篇
排序方式: 共有2579条查询结果,搜索用时 46 毫秒
41.
The partitioning of rare earth elements (REE) between zircon, garnet and silicate melt was determined using synthetic compositions designed to represent partial melts formed in the lower crust during anatexis. The experiments, performed using internally heated gas pressure vessels at 7 kbar and 900–1000 °C, represent equilibrium partitioning of the middle to heavy REE between zircon and garnet during high‐grade metamorphism in the mid to lower crust. The DREE (zircon/garnet) values show a clear partitioning signature close to unity from Gd to Lu. Because the light REE have low concentrations in both minerals, values are calculated from strain modelling of the middle to heavy REE experimental data; these results show that zircon is favoured over garnet by up to two orders of magnitude. The resulting general concave‐up shape to the partitioning pattern across the REE reflects the preferential incorporation of middle REE into garnet, with DGd (zircon/garnet) ranging from 0.7 to 1.1, DHo (zircon/garnet) from 0.4 to 0.7 and DLu (zircon/garnet) from 0.6 to 1.3. There is no significant temperature dependence in the zircon–garnet REE partitioning at 7 kbar and 900–1000 °C, suggesting that these values can be applied to the interpretation of zircon–garnet equilibrium and timing relationships in the ultrahigh‐T metamorphism of low‐Ca pelitic and aluminous granulites.  相似文献   
42.
The dry‐stone retaining walls (DSRW) have been tipped as a promising solution for sustainable development. However, before recently, their behavior is relatively obscure. In this study, discrete element method (DEM) approach was applied to simulate the plane strain failure of these walls. A commercial DEM package (PFC2D™) was used throughout this study. The authors used a fully discrete approach; thus, both the wall and the backfill were modeled as discrete elements. The methodology for obtaining the micromechanical parameters was discussed in detail; this includes the three mechanical sub‐systems of DSRWs: wall, backfill and interface. The models were loaded progressively until failure, and then the results were compared with the full‐scale experimental results where the walls were loaded, respectively, with hydrostatic load and backfill. Despite its complexity and its intensive calculation time, DEM model can then be used to validate a more simplified approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
43.
Reaction and deformation microfabrics provide key information to understand the thermodynamic and kinetic controls of tectono‐metamorphic processes, however, they are usually analysed in two dimensions, omitting important information regarding the third spatial dimension. We applied synchrotron‐based X‐ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite–garnet eclogite in four dimensions, where the 4th dimension is represented by the degree of strain. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway), we focused on the spatial transformation of garnet coronas into elongated garnet clusters with increasing strain. The microtomographic data allowed quantification of garnet volume, shape and spatial arrangement evolution with increasing strain. The microtomographic observations were combined with light microscope and backscatter electron images as well as electron microprobe (EMPA) and electron backscatter diffraction (EBSD) analysis to correlate mineral composition and orientation data with the X‐ray absorption signal of the same mineral grains. With increasing deformation, the garnet volume almost triples. In the low‐strain domain, garnet grains form a well interconnected large garnet aggregate that develops throughout the entire sample. We also observed that garnet coronas in the gabbros never completely encapsulate olivine grains. In the most highly deformed eclogites, the oblate shapes of garnet clusters reflect a deformational origin of the microfabrics. We interpret the aligned garnet aggregates to direct synkinematic fluid flow, and consequently influence the transport of dissolved chemical components. EBSD analyses reveal that garnet shows a near‐random crystal preferred orientation that testifies no evidence for crystal plasticity. There is, however evidence for minor fracturing, neo‐nucleation and overgrowth. Microprobe chemical analysis revealed that garnet compositions progressively equilibrate to eclogite facies, becoming more almandine‐rich. We interpret these observations as pointing to a mechanical disintegration of the garnet coronas during strain localization, and their rearrangement into individual garnet clusters through a combination of garnet coalescence and overgrowth while the rock was deforming.  相似文献   
44.
We describe strain localization by a mixed process of reaction and microstructural softening in a lower greenschist facies ductile fault zone that transposes and replaces middle to upper amphibolite facies fabrics and mineral assemblages in the host schist of the Littleton Formation near Claremont, New Hampshire. Here, Na‐poor muscovite and chlorite progressively replace first staurolite, then garnet, and finally biotite porphyroblasts as the core of the fault zone is approached. Across the transect, higher grade fabric‐forming Na‐rich muscovite is also progressively replaced by fabric‐forming Na‐poor muscovite. The mineralogy of the new phyllonitic fault‐rock produced is dominated by Na‐poor muscovite and chlorite together with late albite porphyroblasts. The replacement of the amphibolite facies porphyroblasts by muscovite and chlorite is pseudomorphic in some samples and shows that the chemical metastability of the porphyroblasts is sufficient to drive replacement. In contrast, element mapping shows that fabric‐forming Na‐rich muscovite is selectively replaced at high‐strain microstructural sites, indicating that strain energy played an important role in activating the dissolution of the compositionally metastable muscovite. The replacement of strong, high‐grade porphyroblasts by weaker Na‐poor muscovite and chlorite constitutes reaction softening. The crystallization of parallel and contiguous mica in the retrograde foliation at the expense of the earlier and locally crenulated Na‐rich muscovite‐defined foliation destroys not only the metastable high‐grade mineralogy, but also its stronger geometry. This process constitutes both reaction and microstructural softening. The deformation mechanism here was thus one of dissolution–precipitation creep, activated at considerably lower stresses than might be predicted in quartzofeldspathic rocks at the same lower greenschist facies conditions.  相似文献   
45.
A computational framework is presented for dynamic strain localization and deformation analyses of water‐saturated clay by using a cyclic elasto‐viscoplastic constitutive model. In the model, the nonlinear kinematic hardening rule and softening due to the structural degradation of soil particles are considered. In order to appropriately simulate the large deformation phenomenon in strain localization analysis, the dynamic finite element formulation for a two‐phase mixture is derived in the updated Lagrangian framework. The shear band development is shown through the distributions of viscoplastic shear strain, the axial strain, the mean effective stress, and the pore water pressure in a normally consolidated clay specimen. From the local stress–strain relations, more brittleness is found inside the shear bands than outside of them. The effects of partially drained conditions and mesh‐size dependency on the shear banding are also investigated. The effect of a partially drained boundary is found to be insignificant on the dynamic shear band propagation because of the rapid rate of applied loading and low permeability of the clay. Using the finer mesh results in slightly narrower shear bands; nonetheless, the results manifest convergency through the mesh refinement in terms of the overall shape of shear banding and stress–strain relations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
46.
47.
We derive the governing equations for the dynamic response of unsaturated poroelastic solids at finite strain. We obtain simplified governing equations from the complete coupled formulation by neglecting the material time derivative of the relative velocities and the advection terms of the pore fluids relative to the solid skeleton, leading to a so‐called us ? pw ? pa formulation. We impose the weak forms of the momentum and mass balance equations at the current configuration and implement the framework numerically using a mixed finite element formulation. We verify the proposed method through comparison with analytical solutions and experiments of quasi‐static processes. We use a neo‐Hookean hyperelastic constitutive model for the solid matrix and demonstrate, through numerical examples, the impact of large deformation on the dynamic response of unsaturated poroelastic solids under a variety of loading conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
48.
This study focuses on the three‐dimensional (3‐D) characteristics of wave propagation in pipe‐pile using elastodynamic finite integration technique. First, a real 3‐D pile‐soil model in cylindrical coordinate system is presented. Then, the governing equations are established. With the boundary and initial conditions, the numerical solution is obtained. The accuracy and feasibility of the self‐written code are further verified via comparing with the measured data. Velocity histories at different angles of pile top and pile tip are illustrated, and the snapshots reflecting the 3‐D characteristics of wave propagation are given. It shows that the interferences of Rayleigh waves can confuse the result interpretation for pile integrity testing. The increase of hammer contact time can effectively mitigate the interferences, and the interferences of Rayleigh waves are weakest at an angle of 90° from where hammer hits. Besides, surrounding soil can partly mitigate the wave interferences. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
49.
Multi‐scale investigations aided by the discrete element method (DEM) play a vital role for current state‐of‐the‐art research on the elementary behaviour of granular materials. Similar to laboratory tests, there are three important aspects to be considered carefully, which are the proper stress/strain definition and measurement, the application of target loading paths and the designed experiment setup, to be addressed in the present paper. Considering the volume sensitive characteristics of granular materials, in the proposed technique, the deformation of the tested specimen is controlled and measured by deformation gradient tensor involving both the undeformed configuration and the current configuration. Definitions of Biot strain and Cauchy stress are adopted. The expressions of them in terms of contact forces and particle displacements, respectively, are derived. The boundary of the tested specimen consists of rigid massless planar units. It is suggested that the representative element uses a convex polyhedral (polygonal) shape to minimize possible boundary arching effects. General loading paths are described by directly specifying the changes in the stress/strain invariants or directions. Loading can be applied in the strain‐controlled mode by specifying the translations and rotations of the boundary units, or in the stress‐controlled mode by using a servo‐control mechanism, or in the combination of the two methods to realize mixed boundary conditions. Taking the simulation results as the natural consequences originated from a complex system, virtual experiments provide particle‐scale information database to conduct multi‐scale investigations for better understanding in granular material behaviours and possible development of the constitutive theories provided the qualitative similarity between the simulation results from virtual experiments and observations on real material behaviour. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
50.
The paper presents a constitutive model for simulating the high strain‐rate behavior of sands. Based on the concepts of critical‐state soil mechanics, the bounding surface plasticity theory and the overstress theory of viscoplasticity, the constitutive model simulates the high strain‐rate behavior of sands under uniaxial, triaxial and multi‐axial loading conditions. The model parameters are determined for Ottawa and Fontainebleau sands, and the performance of the model under extreme transient loading conditions is demonstrated through simulations of split Hopkinson pressure bar tests up to a strain rate of 2000/s. The constitutive model is implemented in a finite‐element analysis software Abaqus to analyze underground tunnels in sandy soil subjected to internal blast loads. Parametric studies are conducted to examine the effect of relative density and type of sand and of the depth of tunnel on the variation of stresses and deformations in the soil adjacent to the tunnels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号